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PREFACE 

Part of the Project RAND research program consists of 

basic supporting studies in mathematics. This includes the 

study of combinatorial problems, with applications to 

communication networks, switching circuits, error-detecting 

and error-correcting codes, etc. 

>  A number of these combinatorial problems can be 

formulated in terms of matrices made up of columns of zeros 

and ones. ^In the present Memorandum the authors continue the 

work of Ryr-2896-PR, Widths and Heights of (0, l)-Matrices, 

to obtain a simple construction that produces a matrix having 

a minimal a-width for all a. 

The work of the coauthor. Dr. Kyser, was supported in 

part by the Office of Ordnance Research.        / 
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SUMMARY 

In a previous Memorandum (RM-2896-PR) the notion of the 

o-wldth of a (0, l)-matrlx was Introduced, and a formula for 

the minimal a-«ldth taken over the class of all (0, l)-matrlces 

having specified row and column sums was obtained.  The present 

Memorandum continues the study begun in RM-2896-PR. The 

principal new result is a simple construction that produces 

a matrix having the property that its »-widths are minimal 

for all a. 
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MULTIPLICITIES AND MINIMAL WIDTHS FOR (0, 1)-MATRICES 

INTRODUCTION 

In a previous paper Cl ] the notion of the a-width £A(a) 

of a (0, l)-inatrix A was introduced, and a formula for the 

minimal a-width £(a), taken  over the class QT of all (0, 1)- 

matrices having the same row and column sums as A, was 

obtained. The main tool in arriving at this formula was a 

block decomposition theorem (Theorem J.l of [l], repeated 

in this paper as Theorem 3.1) that established the existence, 

in the class 0? generated by A, of certain matrices having a 

simple block structure.  The block decomposition theorem does 

not Itself directly Involve the notion of minimal a-width, 

but rather centers around a related class concept, that of 

multiplicity.  We review both of these notions in Sec. 3, 

together with some other pertinent definitions and results. 

The present paper continues the study begun in [l].  The 

principal contribution is a simple construction which produces 

a single matrix A in the class Qt that has some remarkable 

properties:  first, the partial row—sum vectors of A are as 

smooth as possible in the sense of majorlzation (Theorem 4.2); 

second, all minimal a-widths and multiplicities for the class & 

can be obtained directly from ft  (Theorem 4.3 and Corollary 4.4). 

In the concluding section we apply the matrix A in the 

solution of a problem closely related to the minimal width 

problem.  For each A in (^, define M*(ß) to be the maximal 

number of columns that can be selected from A in such a way 
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that the resulting submatrlx has at most P I's In each row. 

It follows readily that the sequences £A(a) and  ^.,(0), where 

A' Is the complement of A, determine each other, and hence 

that the class sequence u(0) = max UA(ß) is determined by 
A in^t A 

the minimal width sequence for the complementary class. 

2.  A BASIC CONSTRUCTION 

Let A be a matrix of m rows and n columns whose entries 

are either 0 or 1. We call A a (0, l)-matrix of size m by n. 

Let the sum of row i of A be denoted by r. and the sum of 

column J of A by s.. We call 

(2.1) R = (rv r2, ..., rm) 

the row—sum vector of A, and 

(2.2) S - (s^, Sp, ..., si 

the column-sum vector of A. These vectors determine a class. 

(2.3) 3] = m (R, S), 

consisting of all (0, l)-matrices of size m by n having row- 

sum vector R and column—svun vector S.  Simple necessary and 

sufficient conditions on R and S are known in order that the 

class (^f (R, S) be nonempty [3], [6], 

Let A he In Ol  and consider the 2 by 2 submatrices of A 

of the types 

1  0 

0  1 

0  1 

L1 0. 
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An interchange is a transformation of the elements of A that 

changes a minor of one of these types into the other, leaving 

all other elements fixed. The interchange theorem [5] asserts 

that if A and B are in Of,  then A is transformable into B by 

interchanges. 

Throughout this paper we suppose, without loss of 

generality, that ö^is nonempty and that 

(2.4) 

(2.5) 

rl > r2 ^ ' ' * > rm > 
0' 

31 > s2 > ... ^ sn > 0. 

Such an (X is termed normalized. 

Let A = [a..] be in 0{. We call the column vector 

(2.6) 

t 
Z    a 

1J 

Z a 
J=l 2J 

£ 
Z e, 
J=l mj 

th T        T 
the £.  partial row-sum vector of A. Thus K, - ^ »  where R 

denotes the transpose of R. 

Given the vectors R and S for a normalized class 0\t  there 

is a simple rule for constructing an A ini^.  This rule may be 

stated somewhat loosely as follows: Select any  column J and 

insert its 1's in the positions corresponding to the s. largest 



row sums.  Delete column J, reduce each of these s^ row sums 

by l, and repeat the entire procedure on another column. 

Example. Let Of be determined by 

R = (7, 6,  3, 2,     2,     2,     2,     2), 

S = (4, 4, 4, 4,  1,  1). 

Suppose we apply the rule from "right to left," I.e., select 

the last column first, then the next to last, and so on, and 

give preference to the bottommost positions in a column In 

case of ties (this keeps the partial row sums monotone). The 

rule then constructs the following matrix A, having partial 

row—sum vectors given by the matrix M: 

A = 

1 

1 

1 

1 

0 

0 

0 

1 

0 

0 

0 

1 

1 

1 

1 

1 

1 

0 

0 

0 

1 

1 

1 

1 

0 0 

1 

1 

1 

1 

1 

0 

1 

1 

0 

0 0 

0 0  0 0 

0  0  0  0 

0 

0  0 

1 

1 

0  0 

0  0 

0 0 0  0  10 

M = 

1 

1 

1 

1 

0 

0 

0 

0 

2 

1 

1 

1 

1 

1 

1 

0 

3 
2 

2 

1 

1 

1 

1 

1 

4 

3 
2 

2 

2 

1 

1 

1 

5 
4 

2 

2 

2 

2 

2 

1 

6 

5 

3 
2 

2 

2 

2 

2 

6 

6 

3 

2 

2 

2 

2 

2 

0 

0 

0 

7 
6 

3 
2 

2 

2 

2 

2 
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The validity of the construction can be established by 

a simple Interchange argument, as follows. Let A be In Of 

and suppose B has been constructed by the rule. We must show 

that B is In OC. Assume that in constructing B, the l»s in 

column J were assigned initially; we may suppose without loss 

of generality that these I's occupy the s. topmost positions 

in column J. If A has a 0 above a 1 in column J, then by the 

monotonicity of the row sums of A, there is an interchange 

that switches this 0 and 1 in column J. Hence we may apply 

interchanges involving column J of A to obtain a transformed 

matrix in OX whose Jth column agrees with the Jth column of B. 

We can now suppress column J of the transformed A and B, and 

repeat the argument.  Eventually A has been transformed by 

interchanges into B, and thus B is InQfi • 

Of course an analogous procedure in which the roles of 

rows and columns are reversed also constructs a matrix in the 

class. 

In Sec. 4 we shall apply this construction in the right 

to left order (as in the example), giving preference to 

bottommost positions in a column in case of ties (as in the 

example).  The resulting matrix will be denoted by X. 

3.  A REVIEW OF MULTIPLICITY AND WIDTH 

Let 0[ = (X(R, S) be a normalized class and let a and ^ 

be integers satisfying 

(3.1)      0 ^ a < rm. 



(3.2) 1 < £ < n. 

We say that a pair a, t   In the respective ranges (3.1), (3.2) 

are compatible If there is an A In ©T having an m by £ sub- 

matrix E» each of whose row sums Is at least a.  If a and ^ 

are compatible, consider the class of all m by^- submatrlces E* 

of the matrices A in OT with the row sums of E* at least a, 

and let 5« denote the number of rows of E* whose sums are 

precisely a. The nonnegative Integer 

(3.3) 5 = 6(a, 6) 

that is equal to the minimum of the Integers 6* is called the 

multiplicity of a with respect to £. 

In rl] the following theorem was proved. 

Theorem 3.1. Let a be compatible with £ and of multiplicity 

6  with respect to t.    Then there is a matrix A In the normalized 

01 of the form 

(3.4) 

M J X 

F 

E 
Y 0 

Here E is of size c b^; £  with exactly a I1 s in each row. 

M is a matrix of size e b^; £ with a + 1 or more 1' s in each 

row.  F is a matrix of size m - (e + *) b£ ^ with exactly 

a + 1 1's in each row.  J is a matrix of 1's of size e by f -fc 

and C Is a zero matrix.  The degenerate cases e = 0, e + ? = m, 

ö = :, f = £, and f = n are not excluded. 
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The g-wldth fc
A(a) of a matrix A in the normalized 01 

is the fewest number of columns that can be selected from A 

so that the resulting submatrix E* has row sums at least a. 

Here 1 < a < r . Then -  J m 

(3.5) £(a) =  min Ua) 
A intft H 

is the minimal a-width of Öf .  The integer £(a), which can 

also be described as the least £  compatible with a, has been 

explicitly determined in terms of the vectors R and S in [l]. 

This determination used the function 

(3.6) N(i, e, f) = re+1 + ... + rm - {3E+1  + ... + sf) + e(f - £), 

where i,   e,   f are integer parameters satisfying 

(3.7) 0 < £ < n, 

(3.8) 0 <; e ^ m, 

(3.9) ^ f < n. 

Precisely, £(a) is the first £ such that 

(3.10) N(£, e, f) ^ a(m - e) 

for all e, f satisfying (3.8), (3.9). Note that if A is in 

Of(R, S) and if we write 
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(3.11) A = 
X  »  Z 

with X of size (m - e) by g and Y of size e by (f - £), then 

(3.12)      N(£, e, f) = N1(X) + N0(Y) + N^Z), 

where N,(Q) rN0(Q)] denotes the number of i's (O's) In a 

(0, l)-matrlx Q. 

It was also proved In [l] that If a, £  are compatible. 

then 

(3.13)  '(a, O = (a + l)m - 3C mln 
0<e<m 

<?^f<n 

[N(£ - 1, e, f) + acj 

(Only the special case of (3.13) in which f = £(a) is stated 

explicitly in [l ], but the proof there establishes (3.13) In 

general. ) 

4.  THE MATRICES A AND M 

If 

* - \t^, t^» '-')   ^m/» 

T* = (tj, t», ..., t«), 

are two vectors of nonnegative Integers, then T Is majorlzed 

by T* [4 ], [5], and we write 

(4.1) T  -< T», 
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provided that, with subscripts renumbered, 

(4.2) ti  > t2 ^  '"  ^ tm'     *! ^ t2 ^ ••• ^ tm, 

(4.3) ti + t2 + ••• + te ^ *! + t2 + •*• + te,  ^e = 1' 2, ••*' m ~ 1^ 

(4.4)  t1 + t2 + ... + tm = t* + t* + ... 
♦ 
m 

In connection with this concept, we prove the following 

lemma, which will be used in the proof of Theorem 4.2. 

Lemma 4.1.  Let T « (t1, t2, ..., t ) and 

T = (t1, t2, ..., t ) be two vectors of nonnegative integers 

satisfying (4.2), (4.3), (4.4).  Let U be obtained from T b^; 

reducing k of its positive components in positions 

i1, i2, ..., ik b^ 1.  Similarly let U be obtained from T 

by reducing k of its positive components in positions 

Jr J2> ■•., Jk by I- i£ *! < Ji» i2 < i2,     ",   lk < Jk, 

then U -< U*. 

Proof.  We proceed by induction on k.  Let k = 1 and 

set i1 = i, J1 = J.  We may take U and U to be monotone 

nonincreasing by assuming that component 1' of T has been 

reduced by 1 to get U, component J of T has been reduced 

by 1 to set U .  Here i' > i, j' ^ J and 

(4.5)  ti  =  ti+1 = ... = t^ > t.1+i. 

(4.6)  t]  = t*+1 = ... ~t*y   > t]1+1. 
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» 

1« < J', then clearly U -< U".  Suppose that I1 > J». Then 

where tll+1 = 0 If 1' = m and t., , ■ 0 if J» - m.  If now 
* 

(4.7) 1 < i < J < J' < 1' ^ m. 

« 
If U is not majorlzed by U , there Is an Integer e 

satisfying 

(4.8) J' ^ e < !• 

for which 

(4.9) tj + tg + ... + te = t1 + t2 + ... + te. 

By assumption, 

(4.10) ti + t2 ■*" *•• + fce-l ^ h + t2 + ••* + Vl' 

(4.11) ti + t2 + •*• + te+l ^ h + t2 + ••• + fce+r 

Subtracting (4.10) from (4.9), and (4.9) from (4.11), yields 

(4.12) te > t*f 

(4.13)      te+1 < te+1. 

By (4.5), (4.7), (4.8), we have 

(4.14)     te - te+1. 

Thus (4.12), (4.13), (4.14) and t* > t*+1 imply 

(',•15,       < -'. - d- 
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If e = J', this contradicts (4.6).  If, on the other hand, 

J' < e, then from (4.15) and (4.9) we have 

(4.16)      ti + t2 +  ••• + te-l " *! + t2 + ••' + fce-l' 

We may now repeat the argument with e - 1 in place of e. 

Eventually (4.6) is contradicted. This verifies Lemma 4.1 

for k = 1. 
« 

Assume the validity of the lemma for k - 1. Let P and P 

be obtained from T and T by reducing components i2, i~, .... ik of T 

and components J2, J3, ..., Jk of T .  By the induction 
* « 

assumption, we have P ■< P .  Of course P and P may not be 

in monotone nonincreasing order, but such rearrangements of 

them can be secured without disturbing the i1  position of P or 

the J-, position of P . Applying the argument used for k = 1 

to these rearrangements, we see that U < U , thus proving 

Lemma 4.1. 

Let the vectors R and S be given for a normalized class 

Ot(R, S) and let A denote the matrix in A(R, S) constructed 

by the rule of Sec. 2, proceeding column-wise from right to 

left and giving preference within a column to bottommost 

positions in case of ties.  We now prove 

Theorem 4.2.  Let A be arbitrary in the normalized class 

Jf  and let A have partial row-sum vectors, R.^, R2, ..., R^. 

Let the matrix A in CT have partial row-sum vectors 

R1,   R2, ..., F^.  Then i^ -< RL, £= 1, 2, ..., n. 
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Proof. We prove Theorem 4.2 by induction. Note that 

(4.17) «n = Rn = R > 

and hence the theorem is valid with i- n. Assume that 

(4.16) R£+l ■<  «.+!' 

and consider the vectors \,  RL. The vector R£ is obtained 

from a nonincreasing rearrangement R*+1 of R£+1 by reducing 

st+1 distinct components of R*+1 by 1. A rearrangement of 

Re is obtained from the monotone R£+1 by reducing the first 

sc+1 components of R£+1 by 1. By Lemma 4.1, we have 

(4.19)     FT - R . 

This proves Theorem 4.2. 

Theorem 4.3.  The matrix A is of form (^.4) fQr_»n 

compatible pairs a, £. 

Proof.  Let a and £ be compatible, and let 

(4.20) A = 

M J x" 
F 

E Y 0 

be the matrix whose existence is given by Theorem 3.1.  Thus 

E is of size 6 = '(a, f.) by £# wlth exactly a l's In each row; 

M is of size e by £,  with at least (a + 1) l-s in each row; 
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F is of size m - (5 + e) by £ with exactly (a + 1) 1's in 

each row; J is a matrix of size e by (f - t), consisting 

entirely of I's; and 0 is a zero matrix. 

Consider the first £ columns of A. Each of the row sums 

of these i  columns must be at least a, for otherwise we may 

use the matrix A to contradict RAR. By the definition 

of multiplicity, the first S columns of A cannot have fewer 

than 6 rows with exactly a I's in each row. Nor can these £■ 

columns have more than r rows with exactly a I's in each row. 

For if this were the case, again Rt A R^ would be contradicted. 

Hence, since R& is monotone, iT has a 6 by £• matrix of form E 

in the lower left comer, and the portion of A corresponding 

to M and F of A must contain at least (a + 1) I's in each 

row.  But 

N(£, e, f) = N-^F) + N-^E) + N0(j) + N^O) 

is a class invariant. Hence the portions of A corresponding 

to F, J, and 0 of A are of the desired form. This completes 

the proof. 

Define M to be the m by n matrix of nonnegative Integers 

whose column vectors are the partial row-sum vectors of A, 

(4.21)      M = iR1,   R2, ..., jy. 

We call M the multiplicity matrix of the normalized class ty. 

Corollary 4.4 collects some Immediate consequences of Theorem 4.3 

that Justify this nomenclature. 
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Corollary 4.4. Let M = [R1, ^, ..., ^J be the 

multiplicity natrlx of the normalized class n,.    Then g and j 

are compatible If and only if the last component of R is at 

least a.     1C a  and s.  are compatible, the multiplicity b{a,  £) 

of a with respect to £ is equal to the number of components of 

fty that are equal to a. 

Example.  To illustrate Theorem 4.3, consider the 

example of Sec. 2 corresponding to the compatible pair a 

«=3: 
= 1, 

M = 

1 1 1 1 1 1 0 1 
1 0 1 1 1 1 1, o 
1 0 1 0 

1 

0 

0 

1 

0 

0 

0 

0 

c 1 0 0 

0 1 0 1 0 0 0 o 
0 1 0 0 1 o 0 0 
0 1 0 c 1 o 0 

1 
c 1 

Lc 0 1 0 0 1 0 0, 

_i 2 3 4 5 6 6 7l 
1 1 2 3 u 5 6 6 
i 1 2 2 2 3 3 3 1 
i 1 1 2 2 2 2 2 
0 1 1 2 2 2 2 2 | 
0 1 1 1 2 2 2 2I 
0 i 1 1 2 2 2 

1 
2 i 

.0 c 1 1 1 2 2 2_ 
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From M, the multiplicity ^f jt, £) for each compatible a, t- 

may be determined as in Corollary 4.4, 

-\ 
1 2 3 4 5 6 7 Ö 

0 h 1 0 0 0 0 0 0 

1 X X (5 ^— i i 0 0 0 

2 X X X x X © 5 5 

i{a, c): 

Here a crossed-out cell in the array means that a and S are 

Incompatible.  Since the minimal a-width i(a) is the first 6 

compatible with a, circled entries in the array pick out 

-(1) = 3, t(2) = 6.  In ter-.iö of the matrix A, t(a) can be 

read off by looking at its last row:  the a-th 1 of this row 

occurs in column k(a). 

We conclude this section by listing some properties 

of Ha, £): 

(4.22) 

(4.2J) 

(4.24) 

(4.25) 

Ha, £) > (a, £+ 1), 

5(a - 1, £(a) 

6(a, e(a)) > C, 

0, 

5(a, e(a)) = Ha - 1, E(a) - 1) + m - s? ^(a) 

The first three of these are evident, either from the definition 

of multiplicity or from the multiplicity matrix v(.     The last 

Is easily proved using M. The property (4.25) can also be 

established from the formula (3.13) for Ha, £■), but this 

approach is more complicated. 



S.  THE SI-CU1-:NC— aA(ß) AND 1(5). 

Let C-OlCR, 3) be a nornalized class and suppose that 

0 Is an integer parameter in the ranc-e 

(5.1)       1 < -  < ri- 

For each A in (X let uA(ß) denote the maximal number of 

columns of A all of whose rows sums are at most S.  (For 

example, if A is the line-point incidence matrix of a pro- 

Jective plane, then aA(2) is the maximal number of points, 

no three of which are collinear, i.e., the size of a maximal 

oval in the plane.)  In this section we point out the close 

connection between this concept and that of width.  In 

particular, we show that the preceding discussion on 

multiplicity and minimal width solves the problem of 

determining the class sequence 

(5-2) -(p)  =     tnaX     M  (ß) _ 

A ma  M 

It will simplify matters in this section If we extend 

the range of p in (5.1) to include ß = 0 by defining u (0) = 0. 

We also take Mo) = 0. 

By the complementary class Q?   = 0{{R*,   s») of (7f = 0T(H, S), 

we mean the class of all (u, 1)-matrices of size m by n with 

row-sum vector 

(5-3)       R' = (n - rmJ n - r^, ..., n - ^), 
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and column—sum vector 

(5.U)       S* = (m - sn, m - s^, ...» m - s^. 

For the purposes of this discussion we take ö( so that 

r < n, s < m. This is no real restriction and makes the 

complementary class normalized.  There is of course a 

natural correspondence between the matrices of Of and those 

of Of ', given by taking the complement of A and reversing 

the order of its rows and columns. We denote the resulting 

matrix by A' and call it the class complement of A. 

Lemma 5.1.  Let a and 3 be integers in the respective 

intervals 

(5.5) o ^ a < n - r^ 

(5.6) 0 < & < ri» 

and let A* be the class complement of A.  Then 

(5.7) £
A.(a) ^ a + ß 

if and only if 

(5.8) UA(ß) > a + ß. 

Proof.  Note that a + ß ranges over the interval 

0 < a + 0 < n. 

Assume (5.7). Then there are a + 9 columns of A having 



at  least a l-s  m each n    i    Hence   th«re are a + ß columns 

of A having at most ß = |1+  ß    S)-   o l's In each row.    Thus 

(5.8) holds.     Conversely.lf   |    (5.5)   holds,  so that A has a + ? 

columns with at most 3 lUn    a each   row,   then A'  has a + p 

columns with at  least a Is ii~rn each roW.    Hence  (5.7) holds. 

tfe use this lemma a tunbes-er of   tiroes in the proof of 

Theorem 5.2,  which shows fet the sequences ^.(a) and  u (ß) 

determine each other. 

Theorem ^.2.     (i)    Wo _     be fixed In the interval   (5.5) 

-■nd let ß be the  least Inher-^ In the Intgrva]   (5.6) for which 

uA(0)  -  ß > a.     Then   ^,(«1« 0   Q+ e.    gonversely,   if a 18 

fixed in the interval   (5.5iarlondif   £A,{a) = a + ß,   then^ Jj* 

the  least  integer in  (5.6Ifar^^,which u^p) -  ß ^ a. 

(ii)    I^i 6 ^ fixed in tl-l>he Interval  (5.6) ^jj^ g hr 

the largest  integer in thelgt^arvaJ:   (5.5) for which 

£A1(a)-a<«.     Then UA(eU a^ö + ß.     Conversely r   if R JS 

fixed in the  interval   (5.6)wdtsUf  ^(9)   = a + 3,   then 7Is 

the  largest  integer in  (5.5| fo cqr whl ch ^,(0)  - a < «. 

Proof.     Observe that l^   .    sequences   £A,(a) - a and 

MA(3) -  ß are monotone non^eseasing.    Me now prove (i).     Let 

a be  fixed in  (5.5) and letp t>&oe the   least Integer in (5.6) 

for which uA(3)  -  ß > a.     % s a ß exists,  since 

VV  -  ^  = n -  ^ ^ a.    ^L^^nma  5.1,   we havefcA1(a) < a + ß. 

If ß  = 0,   then o-O,  and tie ccponcluslon follows.     If 0 > 0, 

then ^(ß -  1)  -   (ß -  1) <,,   f^Hence    by Lemma 5.1, 
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£A((a) > a + ß - 1. Thus a + ß - 1 < tAi(a) < a + 0, and 

hence t^,(a) = a + 0. 

Conversely, suppose £A,(a) = a + 0.  We show first that 

0 < 0 < r^. Clearly 0^0. Since also £A,(n - i^) < n, then 

0 = £A.(ct) - a < £A,(n - r^ - (n - ^) < r1.  Now by 

hypothesis and Lemma 5.1, we have uA{0) - 0 ^ a.  If also 

uÄ(e - 1) - (0 - 1) > a, Lermra 5.1 implies £A,(a) < a + 0 - 1, 

a contradiction. Hence 0 is the least integer in (5-6) for 

which uA(P) - 0 > a. 

The proof of (ii) is similar. 

Let 0( be a normalized class and let the complementary 

normalized class 0t < have minimal width sequence fc(a).  The 

discussion of the preceding section shows that the matrix A 

in QC   has width ^(a) for each a = 0, 1, ..., n - r1.  It 

follows that the matrix A' in Or yields the sequence ü(0): 

(5.9)  ü(0) =  max  u.Cß) = urt(S),   ß = 0, 1, ..., r1. 
A in Of Ä 

The sequences £(a) for ^T' and u{3)  for öt determine each 

other in the manner outlined in Theorem 5-2.  In terms of the 

matrix A in {T, the integer '(5) for OT can be singled out as 

follows:  if the (9 + l)-st 0 of the last row of A occurs In 

column j, then ü(0) ■ J - I. 
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